Object Correspondence in digital twin terrain

Vijayramsriram Sathanandhan
1233713197

Harshvardhan Sivasubramanian
1233780186

Teja Vishnuvardhan Boddu
1234122970

Arizona State University.
2MS Robotics and Autonomous Systems.

Abstract— In this work, we present an integrated
simulation-based framework for detecting and quantifying
rock displacement in a digital twin terrain using autonomous
aerial robotics. The framework utilizes ROS 2 for robotic
middleware, PX4 for flight control, Gazebo Sim for high-
fidelity simulation, and the YOLOV8 deep learning model for
real-time object detection. The simulated environment is
generated using photogrammetric reconstruction of real-world
terrain and rocks, which are imported into Gazebo as mesh-
based objects. A PX4 drone equipped with an RGB-D camera
flies over the environment, capturing images for dataset
generation and live inference. The trained YOLOv8 model
detects the rocks in real-time from onboard camera feeds.
Depth data and camera intrinsic parameters are used to
estimate the 3D coordinates of the detected rocks in the camera
frame, which are subsequently transformed into the world
frame using TF2 and odometry. By comparing the world-
frame positions of the rocks across different terrains (e.g., pre-
and post-displacement), we effectively analyze object
correspondence and motion. This project provides a
foundational prototype for applications in geospatial change
detection, site monitoring, and planetary terrain exploration.

Keywords— ROS 2, PX4, Gazebo Sim, YOLOvVS8, TF2, Object
Detection, Photogrammetry, Meshroom, Blender, UAV, Visual
Odometry, Rock Correspondence

Introduction

The detection and quantification of environmental
changes, especially the displacement of objects in a physical
landscape, is a vital capability in fields such as
environmental monitoring, construction validation, planetary
science, disaster response, and archaeological surveying.
Traditional manual methods of surveying such terrains are
not only time-consuming but also prone to inaccuracies and
may pose significant risks in hostile or remote environments.

To address these challenges, autonomous UAVsS
equipped with computer vision systems provide a scalable
and efficient solution. When deployed in conjunction with
high-resolution terrain maps and robust simulation
environments, these systems can model, observe, and
analyze object changes with a high degree of precision.

In this project, we focused on simulating such a system
using the PX4 flight stack in Gazebo Sim, with a goal to
identify and track rock displacements in a digital
reconstruction of real-world terrain. We began by
reconstructing a terrain using photogrammetry techniques
from a series of overlapping images. These were processed
through Meshroom to generate a textured 3D mesh, which
was cleaned and optimized in Blender. The resulting model,
along with individually reconstructed rock models, was
imported into Gazebo to form a controllable and repeatable
virtual testbed.

Our UAV platform of choice was the PX4-supported
x500 drone with a depth camera. The drone captured RGB
and depth data in the simulated terrain. Using manually

RAS 598 Topic: Space Robotics and Al

collected and labeled image datasets, we fine-tuned a
YOLOV8 model to detect four distinct rock types. Real-time
inference was performed during flight to detect and locate
these rocks. Coordinate estimation was done using depth
data and pinhole projection, followed by TF2-based
transformation to compute world-frame positions. A
comparison of rock coordinates between two terrains—
before and after simulated displacements—enabled us to
track movements with measurable accuracy.

This end-to-end system reflects a robust and extensible
approach to object correspondence in dynamic scenes and
can serve as a foundation for future autonomous mapping
and monitoring systems.

I. METHODOLOGY

The methodology comprises several key stages, each
addressing a vital component of the system: terrain
modeling, simulation environment setup, UAV deployment,
data collection, model training, real-time inference,
coordinate estimation, and displacement analysis.

A. Terrain and Object Modeling

We began by capturing approximately 150 photographs
of a small terrain area with sufficient overlap (20-30%)
between successive frames to ensure effective
photogrammetric reconstruction. These images were

imported into Meshroom, an open-source structure-from-
motion (SfM) and multi-view stereo (MVS) pipeline. The
output was a textured 3D mesh in .OBJ format, along with
associated UV maps.

Fig. 1. Meshroom 3d reconstruction

The mesh was imported into Blender for cleanup.
Artifacts such as floating vertices and non-manifold edges
were removed. The terrain was re-centered, scaled, and
flattened appropriately to ensure correct integration into the
Gazebo physics environment. Textures were retained and
remapped as needed. Similarly, individual rocks were
reconstructed and processed to serve as detectable objects.

https://asu.instructure.com/courses/sis_course_id:2025SpringC-T-SES598-39153-39245/

B. Simulation Setup in Gazebo

The final terrain and rock meshes were incorporated into
a custom SDF world file. Each rock was placed as a
<model> element at a known pose, and the terrain mesh was
marked as static. To enhance realism, lighting, material
properties, and collision geometries were configured.

The PX4 x500_depth drone was spawned using a ROS
2 launch file, which initialized:

e The Gazebo simulation engine with the correct
world.

e The ROS-Gazebo bridge for sensor and control
topic translation.

e The keyboard teleoperation node for manual drone
control.

e A static TF from base_link (drone body) to
camera_link.

e A dynamic TF broadcaster that publishes the
transform from world to base link using PX4
odometry data.

Environment variables such as PX4 GZ WORLD and
PX4_GZ_POSE were configured to dynamically select the
world file and drone spawn location.

C. Data Collection and Labeling

Using the keyboard control node, the drone was manually
flown around the terrain to capture diverse views of all rocks.
The RGB images were saved in batches, and corresponding
camera info and depth data were stored for future processing.

Fig. 2. Yolo training dataset.

Each image was manually labeled using Roboflow,
annotating bounding boxes for each rock as one of four
classes (rockl to rock4). The labeled dataset was split into
training and validation sets in YOLO format.

D. YOLOV8 Training and Optimization

We utilized the Ultralytics YOLOv8 framework,
beginning with a pretrained yolov8n.pt model (nano variant).
The training configuration included:

e Epochs: 100
o Image size: 640x640 pixels
e Batch size: 8

e Early stopping: patience=20\

F1-Confidence Curve

— rockl
rock2
rock3
rockd
= all classes 1.00 at 0.735

0.6

0.24

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Fig. 3. F1-Confidence curve.

Precision-Confidence Curve

— —— rockl
rock2
— rock3
—— rock4
== all classes 1.00 at 0.979

Precision
e
o

14
=

0.2

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

10 Recall-Confidence Curve

rockl
rock2
rock3
—— rockd

0.8 = all classes 1.00 at 0.000

0.6

Recall

0.4

0.2

0.0
0.0 0.2 0.4 0.6

Confidence

Fig. 4. Precision & recall confidence curve.

Training was performed on GPU. The final model
achieved a loss of ~0.01, with a validation mAP@0.5 of
0.995. The PR curves, confusion matrix, and F1-Confidence
plots indicated a stable and high-performing model with
negligible overfitting.

E. Coordinate Estimation and Transformation

To compute the 3D location of detected rocks, we used
the center pixel of each YOLO bounding box. The
corresponding depth value was extracted from the aligned
depth image. Using the intrinsic camera parameters from the

/camera_info topic, the 3D position in the camera frame was
computed via the pinhole projection model:

(u—cy) Z Y:(v—cy)-Z’

X = ;
fa ' Iy

Z = depth(u,v)

These coordinates were then transformed to the world
frame using the TF2 tree:

e A dynamic transform (world — base_link) based on
PX4 odometry

e A static transform (base link — camera_link)

The final world coordinates of each rock were logged in a
CSV file and visualized in RViz2 using marker topics.

Fig. 5. RQT graph.

Il. EXPERIMENTS AND RESULTS

A. Detection Performance
The YOLOvV8 model achieved highly reliable results:

e Confusion Matrix: Perfect classification with no
class overlap.

e PR Curve: Maintained precision and recall above
0.99 across thresholds.

e F1-Confidence: F1 scores above 0.98, indicating
balanced precision and recall.

o Inference Time: ~15-20 ms per image on GPU,
suitable for real-time operation.

B. Localization Accuracy

World-frame coordinates estimated using depth + TF2
were visualized in RViz2. The detected rock positions
were stable across multiple runs with standard deviation
within £0.2 meters, validating the consistency of the
camera model and depth estimation.

C. Rock Displacement Detection

To simulate terrain changes, a second world was created
with the same terrain mesh but repositioned rocks. Running
the same detection pipeline yielded new coordinate sets,
which were compared to the originals.

Fig. 6. Rviz2 visualization.

The system successfully detected rock displacements
ranging from 0.2m to 0.4m, with visual confirmation in
RViz2 and numeric differences logged in CSV files. This
validated the system’s ability to track object correspondence
over time and across scenes.

I1l. PROPOSED SYSTEM
The complete pipeline consists of five ROS 2 nodes:

1. control.py - Publishes velocity and arming
commands from keyboard inputs.

2. yolo.py — Loads YOLOV8 model and performs live
inference from the RGB feed.

3. coordinates.py — Computes camera coordinates,
applies TF transformations, and logs world-frame
rock positions.

4. tf _broadcaster — Broadcasts the
odometry-based world — base link TF.

dynamic

5. ros_gz_bridge — Handles bridging for RGB, depth,
camera_info, and other Gazebo topics.

These nodes work together to form a real-time loop:
detect — localize — transform — visualize — compare. The
system is modular, extensible, and ready for both simulation
and real-world UAV deployment.

IV. CONCLUSION

This project demonstrates a fully integrated and
simulation-driven framework for detecting and analyzing
object displacement in digital twin environments using
UAVSs, computer vision, and robotics middleware. By
combining photogrammetry-based terrain reconstruction
with PX4-based drone simulation, ROS 2 infrastructure, and
deep learning-powered object detection via YOLOvVS, we
have developed an end-to-end pipeline capable of identifying
specific objects (in this case, rocks), estimating their spatial
coordinates in real-world frames, and comparing them across
different environments to infer displacement.

One of the significant achievements of this project is the
successful integration of multiple advanced technologies—
from 3D terrain modeling to robotic control, and from real-
time visual inference to 3D coordinate transformation using
TF2. The fine-tuned YOLOvV8 model performed
exceptionally well on our custom dataset, achieving near-
perfect class separation and low inference latency, validating
its suitability for UAV-based real-time object detection tasks.
The accurate conversion of pixel-space detections into

world-frame coordinates using depth data and odometry-
enabled transforms showcases the robustness of the system's
perception pipeline.

Our methodology not only provided quantifiable insights
into object movement but also demonstrated the power of
simulation in testing complex robotic workflows without the
constraints or risks of real-world deployment. This capability
is particularly relevant in contexts such as planetary
exploration, disaster site assessment, archaeological
monitoring, or remote infrastructure surveillance—domains
where physical access is limited, and precise change
detection is essential.

Additionally, the modular and extensible nature of our
ROS 2 package makes it adaptable to other applications or
sensor configurations. The use of TF2 and standardized ROS
interfaces ensures compatibility with existing SLAM,
mapping, or control algorithms, thereby facilitating future
enhancements and real-world deployment.

However, while the simulation-based results are
promising, several limitations were identified. The absence
of SLAM means odometry drift could affect long-term
localization. The system currently requires manual matching
of detected objects across different worlds. Furthermore, the
reliance on a static camera-to-body transform may reduce
adaptability in dynamic environments or if the camera is
gimballed.

To address these limitations, future work will focus on:

¢ Integrating ORB-SLAMS3 or Cartographer for drift-
free localization.

e Automating correspondence matching using
descriptor-based object re-identification or nearest-
neighbor matching of coordinate logs.

e Incorporating 3D point cloud comparison tools such
as CloudCompare for full-scene displacement
analysis.

e Adapting the system to run onboard real UAVs
equipped with stereo or RGB-D cameras for field
validation.

In summary, this project provides a strong proof of
concept for vision-based object correspondence and
displacement detection using simulated autonomous drones.
It demonstrates how computer vision, robotics simulation,
and Al can be harmonized into a powerful toolset for spatial
analysis and monitoring in challenging environments. The
framework serves as a solid foundation for both academic

research and real-world exploration systems, and opens up
opportunities for further innovation in intelligent robotic
perception and autonomous mapping.

REFERENCES
[1] G. Jocher, A. Stoken, J. Chaurasia, et al., “YOLO by Ultralytics,”
GitHub Repository, 2023. [Online]. Auvailable:

https://github.com/ultralytics/ultralytics

[2] PX4 Autopilot Development Team, “PX4 Open Source Flight Control
Stack,” PX4 Documentation, 2023. [Online]. Available: https://docs.px4.io

[3] Open Robotics, “Gazebo Sim: Robot Simulation Made Easy,” Gazebo
Documentation, 2023. [Online]. Available: https://gazebosim.org

[4] AliceVision Development Team, “Meshroom: A 3D Reconstruction
Software Based on Photogrammetry,” AliceVision Project, 2023. [Online].
Auvailable: https://alicevision.org

[5] Open Source Robotics Foundation, “Robot Operating System 2 (ROS
2): A Flexible Framework for Writing Robot Software,” ROS
Documentation, 2023. [Online]. Available: https://docs.ros.org

[6] ROS 2 Developers, “TF2 Transform Library: Coordinate Framesfor
Robot Systems,” ROS 2 Intermediate Tutorials, 2023. [Online]. Available:
https://docs.ros.org/en/foxy/Tutorials/Intermediate/ T2/

[7] B. D. Lucas and T. Kanade, "An lterative Image Registration Technique
with an Application to Stereo Vision," in Proceedings of the 7th
International Joint Conference on Artificial Intelligence (IJCAI), 1981.

[8] A. Redmon and S. Farhadi, “YOLOv3: An Incremental Improvement,”
arXiv preprint, arXiv:1804.02767, 2018.

[9] M. Cordts et al., "The Cityscapes Dataset for Semantic Urban Scene
Understanding,” in Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2016.

[10] Blender Foundation, “Blender — Free and Open 3D Creation
Software,” Blender.org, [Online]. Available: https://www.blender.org

[11] M. Quigley et al., "ROS: an open-source Robot Operating System," in
ICRA Workshop on Open Source Software, vol. 3, no. 3.2, 2009.

[12] J. Engel, T. Schops, and D. Cremers, “LSD-SLAM: Large-Scale
Direct Monocular SLAM,” in European Conference on Computer Vision
(ECCV), 2014.

[13] R. Mur-Artal and J. D. Tardds, “ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE
Transactions on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017.

[14] T. Whelan et al., “ElasticFusion: Real-time dense SLAM and light
source estimation,” The International Journal of Robotics Research, vol.
35, no. 14, pp. 1697-1716, 2016.

[15] P. Besl and N. McKay, “A Method for Registration of 3D Shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp. 239-256, 1992. (for future extension using ICP in point cloud
comparison)

[16] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “IMU
Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-
Posteriori Estimation,” in Robotics: Science and Systems (RSS), 2015.

https://github.com/ultralytics/ultralytics
https://gazebosim.org/
https://alicevision.org/
https://www.blender.org/

