
RAS 598 Topic: Space Robotics and AI 

      Object Correspondence in digital twin terrain 
 

Vijayramsriram Sathanandhan 

1233713197 

Harshvardhan Sivasubramanian 

1233780186 
1Arizona State University. 

2MS Robotics and Autonomous Systems. 

Teja Vishnuvardhan Boddu 

1234122970 

Abstract— In this work, we present an integrated 

simulation-based framework for detecting and quantifying 

rock displacement in a digital twin terrain using autonomous 

aerial robotics. The framework utilizes ROS 2 for robotic 

middleware, PX4 for flight control, Gazebo Sim for high-

fidelity simulation, and the YOLOv8 deep learning model for 

real-time object detection. The simulated environment is 

generated using photogrammetric reconstruction of real-world 

terrain and rocks, which are imported into Gazebo as mesh-

based objects. A PX4 drone equipped with an RGB-D camera 

flies over the environment, capturing images for dataset 

generation and live inference. The trained YOLOv8 model 

detects the rocks in real-time from onboard camera feeds. 

Depth data and camera intrinsic parameters are used to 

estimate the 3D coordinates of the detected rocks in the camera 

frame, which are subsequently transformed into the world 

frame using TF2 and odometry. By comparing the world-

frame positions of the rocks across different terrains (e.g., pre- 

and post-displacement), we effectively analyze object 

correspondence and motion. This project provides a 

foundational prototype for applications in geospatial change 

detection, site monitoring, and planetary terrain exploration. 

Keywords— ROS 2, PX4, Gazebo Sim, YOLOv8, TF2, Object 

Detection, Photogrammetry, Meshroom, Blender, UAV, Visual 

Odometry, Rock Correspondence 

Introduction 

The detection and quantification of environmental 
changes, especially the displacement of objects in a physical 
landscape, is a vital capability in fields such as 
environmental monitoring, construction validation, planetary 
science, disaster response, and archaeological surveying. 
Traditional manual methods of surveying such terrains are 
not only time-consuming but also prone to inaccuracies and 
may pose significant risks in hostile or remote environments. 

To address these challenges, autonomous UAVs 
equipped with computer vision systems provide a scalable 
and efficient solution. When deployed in conjunction with 
high-resolution terrain maps and robust simulation 
environments, these systems can model, observe, and 
analyze object changes with a high degree of precision. 

In this project, we focused on simulating such a system 
using the PX4 flight stack in Gazebo Sim, with a goal to 
identify and track rock displacements in a digital 
reconstruction of real-world terrain. We began by 
reconstructing a terrain using photogrammetry techniques 
from a series of overlapping images. These were processed 
through Meshroom to generate a textured 3D mesh, which 
was cleaned and optimized in Blender. The resulting model, 
along with individually reconstructed rock models, was 
imported into Gazebo to form a controllable and repeatable 
virtual testbed. 

Our UAV platform of choice was the PX4-supported 
x500 drone with a depth camera. The drone captured RGB 
and depth data in the simulated terrain. Using manually 

collected and labeled image datasets, we fine-tuned a 
YOLOv8 model to detect four distinct rock types. Real-time 
inference was performed during flight to detect and locate 
these rocks. Coordinate estimation was done using depth 
data and pinhole projection, followed by TF2-based 
transformation to compute world-frame positions. A 
comparison of rock coordinates between two terrains—
before and after simulated displacements—enabled us to 
track movements with measurable accuracy. 

This end-to-end system reflects a robust and extensible 
approach to object correspondence in dynamic scenes and 
can serve as a foundation for future autonomous mapping 
and monitoring systems. 

I. METHODOLOGY 

The methodology comprises several key stages, each 

addressing a vital component of the system: terrain 

modeling, simulation environment setup, UAV deployment, 

data collection, model training, real-time inference, 

coordinate estimation, and displacement analysis. 

A. Terrain and Object Modeling 

We began by capturing approximately 150 photographs 
of a small terrain area with sufficient overlap (20–30%) 
between successive frames to ensure effective 
photogrammetric reconstruction. These images were 
imported into Meshroom, an open-source structure-from-
motion (SfM) and multi-view stereo (MVS) pipeline. The 
output was a textured 3D mesh in .OBJ format, along with 
associated UV maps. 

 

Fig. 1. Meshroom 3d reconstruction 

 

The mesh was imported into Blender for cleanup. 
Artifacts such as floating vertices and non-manifold edges 
were removed. The terrain was re-centered, scaled, and 
flattened appropriately to ensure correct integration into the 
Gazebo physics environment. Textures were retained and 
remapped as needed. Similarly, individual rocks were 
reconstructed and processed to serve as detectable objects. 

https://asu.instructure.com/courses/sis_course_id:2025SpringC-T-SES598-39153-39245/


B. Simulation Setup in Gazebo 

The final terrain and rock meshes were incorporated into 
a custom SDF world file. Each rock was placed as a 
<model> element at a known pose, and the terrain mesh was 
marked as static. To enhance realism, lighting, material 
properties, and collision geometries were configured. 

The PX4 x500_depth drone was spawned using a ROS 
2 launch file, which initialized: 

• The Gazebo simulation engine with the correct 
world. 

• The ROS-Gazebo bridge for sensor and control 
topic translation. 

• The keyboard teleoperation node for manual drone 
control. 

• A static TF from base_link (drone body) to 
camera_link. 

• A dynamic TF broadcaster that publishes the 
transform from world to base_link using PX4 
odometry data. 

Environment variables such as PX4_GZ_WORLD and 
PX4_GZ_POSE were configured to dynamically select the 
world file and drone spawn location. 

C. Data Collection and Labeling 

Using the keyboard control node, the drone was manually 
flown around the terrain to capture diverse views of all rocks. 
The RGB images were saved in batches, and corresponding 
camera info and depth data were stored for future processing. 

 

Fig. 2. Yolo training dataset. 

Each image was manually labeled using Roboflow, 
annotating bounding boxes for each rock as one of four 
classes (rock1 to rock4). The labeled dataset was split into 
training and validation sets in YOLO format. 

D. YOLOv8 Training and Optimization 

We utilized the Ultralytics YOLOv8 framework, 
beginning with a pretrained yolov8n.pt model (nano variant). 
The training configuration included: 

• Epochs: 100 

• Image size: 640x640 pixels 

• Batch size: 8 

• Early stopping: patience=20\ 

 

Fig. 3. F1-Confidence curve. 

 

 

Fig. 4. Precision & recall confidence curve. 

 

Training was performed on GPU. The final model 
achieved a loss of ~0.01, with a validation mAP@0.5 of 
0.995. The PR curves, confusion matrix, and F1-Confidence 
plots indicated a stable and high-performing model with 
negligible overfitting. 

E. Coordinate Estimation and Transformation 

To compute the 3D location of detected rocks, we used 
the center pixel of each YOLO bounding box. The 
corresponding depth value was extracted from the aligned 
depth image. Using the intrinsic camera parameters from the 



/camera_info topic, the 3D position in the camera frame was 
computed via the pinhole projection model: 

 

These coordinates were then transformed to the world 
frame using the TF2 tree: 

• A dynamic transform (world → base_link) based on 
PX4 odometry 

• A static transform (base_link → camera_link) 

The final world coordinates of each rock were logged in a 
CSV file and visualized in RViz2 using marker topics. 

 

Fig. 5. RQT graph. 

 

II. EXPERIMENTS AND RESULTS 

A. Detection Performance 

The YOLOv8 model achieved highly reliable results: 

• Confusion Matrix: Perfect classification with no 
class overlap. 

• PR Curve: Maintained precision and recall above 
0.99 across thresholds. 

• F1-Confidence: F1 scores above 0.98, indicating 
balanced precision and recall. 

• Inference Time: ~15–20 ms per image on GPU, 
suitable for real-time operation. 

B. Localization Accuracy 

 World-frame coordinates estimated using depth + TF2 
were visualized in RViz2. The detected rock positions 
were stable across multiple runs with standard deviation 
within ±0.2 meters, validating the consistency of the 
camera model and depth estimation. 

C. Rock Displacement Detection 

To simulate terrain changes, a second world was created 
with the same terrain mesh but repositioned rocks. Running 
the same detection pipeline yielded new coordinate sets, 
which were compared to the originals. 

 

Fig. 6. Rviz2 visualization. 

 

The system successfully detected rock displacements 
ranging from 0.2m to 0.4m, with visual confirmation in 
RViz2 and numeric differences logged in CSV files. This 
validated the system’s ability to track object correspondence 
over time and across scenes. 

III. PROPOSED SYSTEM 

The complete pipeline consists of five ROS 2 nodes: 

1. control.py – Publishes velocity and arming 
commands from keyboard inputs. 

2. yolo.py – Loads YOLOv8 model and performs live 
inference from the RGB feed. 

3. coordinates.py – Computes camera coordinates, 
applies TF transformations, and logs world-frame 
rock positions. 

4. tf_broadcaster – Broadcasts the dynamic 
odometry-based world → base_link TF. 

5. ros_gz_bridge – Handles bridging for RGB, depth, 
camera_info, and other Gazebo topics. 

These nodes work together to form a real-time loop: 
detect → localize → transform → visualize → compare. The 
system is modular, extensible, and ready for both simulation 
and real-world UAV deployment. 

IV. CONCLUSION 

This project demonstrates a fully integrated and 
simulation-driven framework for detecting and analyzing 
object displacement in digital twin environments using 
UAVs, computer vision, and robotics middleware. By 
combining photogrammetry-based terrain reconstruction 
with PX4-based drone simulation, ROS 2 infrastructure, and 
deep learning-powered object detection via YOLOv8, we 
have developed an end-to-end pipeline capable of identifying 
specific objects (in this case, rocks), estimating their spatial 
coordinates in real-world frames, and comparing them across 
different environments to infer displacement. 

One of the significant achievements of this project is the 
successful integration of multiple advanced technologies—
from 3D terrain modeling to robotic control, and from real-
time visual inference to 3D coordinate transformation using 
TF2. The fine-tuned YOLOv8 model performed 
exceptionally well on our custom dataset, achieving near-
perfect class separation and low inference latency, validating 
its suitability for UAV-based real-time object detection tasks. 
The accurate conversion of pixel-space detections into 



world-frame coordinates using depth data and odometry-
enabled transforms showcases the robustness of the system's 
perception pipeline. 

Our methodology not only provided quantifiable insights 
into object movement but also demonstrated the power of 
simulation in testing complex robotic workflows without the 
constraints or risks of real-world deployment. This capability 
is particularly relevant in contexts such as planetary 
exploration, disaster site assessment, archaeological 
monitoring, or remote infrastructure surveillance—domains 
where physical access is limited, and precise change 
detection is essential. 

Additionally, the modular and extensible nature of our 
ROS 2 package makes it adaptable to other applications or 
sensor configurations. The use of TF2 and standardized ROS 
interfaces ensures compatibility with existing SLAM, 
mapping, or control algorithms, thereby facilitating future 
enhancements and real-world deployment. 

However, while the simulation-based results are 
promising, several limitations were identified. The absence 
of SLAM means odometry drift could affect long-term 
localization. The system currently requires manual matching 
of detected objects across different worlds. Furthermore, the 
reliance on a static camera-to-body transform may reduce 
adaptability in dynamic environments or if the camera is 
gimballed. 

To address these limitations, future work will focus on: 

• Integrating ORB-SLAM3 or Cartographer for drift-
free localization. 

• Automating correspondence matching using 
descriptor-based object re-identification or nearest-
neighbor matching of coordinate logs. 

• Incorporating 3D point cloud comparison tools such 
as CloudCompare for full-scene displacement 
analysis. 

• Adapting the system to run onboard real UAVs 
equipped with stereo or RGB-D cameras for field 
validation. 

In summary, this project provides a strong proof of 
concept for vision-based object correspondence and 
displacement detection using simulated autonomous drones. 
It demonstrates how computer vision, robotics simulation, 
and AI can be harmonized into a powerful toolset for spatial 
analysis and monitoring in challenging environments. The 
framework serves as a solid foundation for both academic 

research and real-world exploration systems, and opens up 
opportunities for further innovation in intelligent robotic 
perception and autonomous mapping. 

 

REFERENCES 

  [1] G. Jocher, A. Stoken, J. Chaurasia, et al., “YOLO by Ultralytics,” 
GitHub Repository, 2023. [Online]. Available: 
https://github.com/ultralytics/ultralytics 

[2] PX4 Autopilot Development Team, “PX4 Open Source Flight Control 
Stack,” PX4 Documentation, 2023. [Online]. Available: https://docs.px4.io 

[3] Open Robotics, “Gazebo Sim: Robot Simulation Made Easy,” Gazebo 
Documentation, 2023. [Online]. Available: https://gazebosim.org 

[4] AliceVision Development Team, “Meshroom: A 3D Reconstruction 
Software Based on Photogrammetry,” AliceVision Project, 2023. [Online]. 
Available: https://alicevision.org 

[5] Open Source Robotics Foundation, “Robot Operating System 2 (ROS 
2): A Flexible Framework for Writing Robot Software,” ROS 
Documentation, 2023. [Online]. Available: https://docs.ros.org 

[6] ROS 2 Developers, “TF2 Transform Library: Coordinate Framesfor 
Robot Systems,” ROS 2 Intermediate Tutorials, 2023. [Online]. Available: 
https://docs.ros.org/en/foxy/Tutorials/Intermediate/Tf2/ 

[7] B. D. Lucas and T. Kanade, "An Iterative Image Registration Technique 
with an Application to Stereo Vision," in Proceedings of the 7th 
International Joint Conference on Artificial Intelligence (IJCAI), 1981. 

[8] A. Redmon and S. Farhadi, “YOLOv3: An Incremental Improvement,” 
arXiv preprint, arXiv:1804.02767, 2018. 

[9] M. Cordts et al., "The Cityscapes Dataset for Semantic Urban Scene 
Understanding," in Proc. of the IEEE Conf. on Computer Vision and 
Pattern Recognition (CVPR), 2016. 

[10] Blender Foundation, “Blender – Free and Open 3D Creation 
Software,” Blender.org, [Online]. Available: https://www.blender.org 

[11] M. Quigley et al., "ROS: an open-source Robot Operating System," in 
ICRA Workshop on Open Source Software, vol. 3, no. 3.2, 2009. 

[12] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale 
Direct Monocular SLAM,” in European Conference on Computer Vision 
(ECCV), 2014. 

[13] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source 
SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE 
Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017. 

[14] T. Whelan et al., “ElasticFusion: Real-time dense SLAM and light 
source estimation,” The International Journal of Robotics Research, vol. 
35, no. 14, pp. 1697–1716, 2016. 

[15] P. Besl and N. McKay, “A Method for Registration of 3D Shapes,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, 
no. 2, pp. 239–256, 1992. (for future extension using ICP in point cloud 
comparison) 

[16] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “IMU 
Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-
Posteriori Estimation,” in Robotics: Science and Systems (RSS), 2015. 

 

 
 

 

https://github.com/ultralytics/ultralytics
https://gazebosim.org/
https://alicevision.org/
https://www.blender.org/

